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ABSTRACT 

This research compares methods for measuring pilot mental workload (MWL) from the 

electrocardiogram (ECG) signal.  ECG-based metrics have been used extensively in MWL 

research.  Heart rate (HR) and heart-rate variability (HRV) exhibit changes in response to varying 

levels of task demand.  Classical methods for HRV analysis examine the ECG signal in the linear 

time and frequency domains.  More contemporary research has advanced the notion that nonlinear 

elements contribute to cardiac control and ECG signal generation, spawning development of 

analytical techniques borrowed from the domain of nonlinear dynamics (NLD).  Applications of 

nonlinear HRV analysis are substantial in clinical diagnosis settings; however, such applications 

are less frequent in MWL research, especially in the aviation domain.  Specifically, the relative 

utility of linear and non-linear HRV analysis methods has not been fully assessed in pilot MWL 

research. 

This thesis contributes to aforementioned research gap by comparing a non-linear HRV 

method, utilizing transition probability variances (TPV), to classical time and frequency domain 

methods, focusing the analysis on sensitivity and diagnosticity.  ECG data is harvested from a 

recent study characterizing spatial disorientation (SDO) risk amongst three candidate off-

boresight (OBS) helmet-mounted display (HMD) symbologies in a tactically relevant live-flight 

task.  A comparative analysis of methods on this dataset and supplemental workload analysis for 

the HMD study are presented.  Results indicate the TPV method may exhibit higher sensitivity 

and diagnosticity than classical methods. However, limitations of this analysis warrant further 

investigation into this question. 
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PUBLIC ABSTRACT 

This research compares methods for measuring pilot mental workload (MWL) from the 

electrocardiogram (ECG) signal.  The ECG signal reflects changes in heart rhythms associated 

with the human response to task demands.  Classical analytical methods employ basic statistical 

summaries and spectrum estimates.  More robust contemporary methods leverage the complexity 

of the ECG signal.  Applications of these more complex methods are substantial in clinical 

diagnosis settings; however, they are largely underutilized in MWL applications, especially in 

aviation settings.  Specifically, the relative utility of linear and non-linear HRV analysis methods 

has not been fully assessed in pilot MWL research. 

This thesis contributes to aforementioned research gap by comparing a novel method, 

utilizing transition probability variances (TPV), to classical methods, focusing the analysis on 

sensitivity and diagnosticity.  ECG data is harvested from a recent study characterizing spatial 

disorientation (SDO) risk amongst three candidate helmet-mounted display (HMD) symbologies 

in a tactically relevant live-flight task.  A comparative analysis of methods on this dataset and 

supplemental workload analysis for the HMD study are presented.  Results indicate the TPV 

method may exhibit higher sensitivity and diagnosticity than classical methods.  However, 

limitations of this analysis warrant further investigation into this question. 
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CHAPTER 1 – INTRODUCTION  

Synopsis 

This thesis examines physiologic measurement of pilot mental workload (MWL) in a 

live-flight, tactically relevant flying task.  The specific objective is to compare analytical 

methods for MWL measurement using metrics derived from the electrocardiogram (ECG) signal 

in the linear and nonlinear domains.  A newer, nonlinear method is compared to classical linear 

time and frequency domain methods on the same ECG dataset.  The analysis focuses on 

sensitivity and diagnosticity of the methods and assesses their utility in a live-flight operational 

setting. 

Background and Motivation 

Mental workload (MWL) is an extensively researched topic in human factors and has 

become increasingly important as the introduction of new technology continues to impose 

greater cognitive demands (M. S. Young, Brookhuis, Wickens, & Hancock, 2015).  While many 

definitions exist, mental workload may be defined as the costs a human operator incurs in the 

performance of a task (Kramer, 1991), or costs incurred accomplishing mission requirements 

(Hart, 2006).  It is a concept of obvious importance in a high-stakes domain such as aviation, 

particularly in modern fighter aircraft, where it has direct implications for safety of flight and 

mission effectiveness. 

The modern fighter pilot must balance multiple concurrent tasks such as navigation, 

communication, threat avoidance, and weapons employment.  As such, managing cockpit tasks 

inherently places high demands on a pilot’s finite attentional resources.  If the cost of meeting 

such demands exceeds available mental resources, safety and mission effectiveness suffer.  Non-

optimal levels of MWL are inherently linked to situation awareness (SA) related errors, which 

often have costly and deadly consequences (Wickens, 2002b).  MWL considerations are of 

growing importance in this context given the evolution of technology apparent in 5th generation 
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fighter aircraft, such as the F-35, compared to legacy fighters.  Sensor and information 

capabilities are more robust than ever.  The preponderance of air-to-ground and beyond visual 

range (BVR) air-to-air employment has made shifted demands of the fighter pilot more into the 

cognitive than physical domain.  Further, smaller inventories funnel more tactical information 

and SA requirements to a single aircraft and its pilot.  Such factors have the potential to 

increasingly push human MWL limits and must be effectively managed.   

Given these considerations, MWL measurement is naturally an area of interest in aircraft 

systems development during which there exists a need to quantify the mental cost of performing 

tasks and predict system performance (Cain, 2007).  Nearly a half-century of research has 

generated a wide range of MWL measurement techniques, which fall under three general 

categories: subjective measures, task performance measures (primary and secondary), and 

physiologic measures (Wierwille & Eggemeier, 1993).  Subjective methods are based on the 

operator’s perception of task demands and are usually administered via rating scales and 

questionnaires.  Performance measures, as the name implies, characterize the operator’s 

performance in specific task, capturing ability to perform the primary task and the amount of 

spare mental capacity via the secondary task performance.  Physiologic methods measure 

biological signals to infer nervous system activity known to vary as a function of an operator’s 

response to task demands.   

With so many available methods, there exists a challenge selecting a method, given no 

single one is universally considered superior in every setting.  In most cases, selection of the 

appropriate method is context dependent.  Suitability may vary based on the mental resource 

type associated with the task in question (e.g. working memory, attention), characteristics of the 

operator (e.g. expert vs. novice), and the scope and limitations of the research (M. S. Young et 

al., 2015).  In general, MWL measurement methods must be adequately sensitive to changes in 

MWL levels and diagnostic with respect to workload-driving elements of the task.  Further, these 

methods must be suitable and effective in both laboratory (i.e. simulator) and field (i.e. live 
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flight) environments to characterize MWL in both controlled experiments and operationally 

relevant settings. 

Physiologic methods constitute just one category of methods, but the category of specific 

interest for the research herein.  These methods appeal to practitioners since they provide 

continuous objective measurement with little to no impact on task execution.  Cardiovascular 

measures, most derived from the ECG signal, constitute the most widely-used set of physiologic 

MWL indices (Scerbo, Freeman, Parasuraman, Di Nocero, & Prinzel, 2001).  Other methods 

include electroencephalogram (EEG), galvanic skin response (GSR), and eye-related measures.  

Given current technology, ECG remains one of the more appealing methods for applied MWL 

measurement given the accuracy, reliability and low footprint of the sensors (Fahrenberg & 

Wientjes, 1999).  As such, ECG has been used successfully for this purpose in real-world 

settings for many years (Wilson, 1992).     

Given their suitability for live-flight research, the focus of this thesis is further narrowed 

to ECG-based methods.  The ECG signal reflects the dynamic regulation of heart rhythms by the 

autonomic nervous system (ANS) and thus provide numerous metrics that correlate to MWL 

(Kramer, 1991).  Just as in the greater picture of MWL measurement, there exists controversy as 

to which ECG metric is superior (Henelius, Hirvonen, Holm, Korpela, & Muller, 2009).  These 

metrics primarily include heart rate (HR) and heart rate variability (HRV).  HRV is generally 

defined as the variance between successive cardiac cycles, or the normal-normal (NN) interval 

between QRS complexes in the ECG signal.  As MWL increases, HR generally increases while 

HRV decreases (Wilson, 2002a). 

HRV analysis is applied in multiple domains of science to include medicine and 

psychophysiological research.  As a result, a wide variety of analysis techniques have been 

developed which leverage different characteristics of the signal (Kuo & Chen, 1998).  These 

methods may be grouped in three general categories: time domain, frequency domain, and 

nonlinear domain.  Metrics in each of these domains have demonstrated utility for various 

scientific objectives.  Time and frequency domain methods constitute what is referred to herein 
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as “classical” methods and have been by far more widely utilized in MWL research.  More 

contemporary methods are based on the notion that ECG signal exhibits chaos as nonlinear 

elements contribute to cardiac control (Glass, 2009; Voss, Schulz, Schroeder, Baumert, & 

Caminal, 2009).  Given this assumption, the ECG signal dynamics, and therefore the underlying 

system dynamics, are obscured in the linear domain.  This has spawned the development of 

newer metrics based on analytical techniques borrowed from the domains of nonlinear dynamics 

and information theory (Voss et al., 2009; H. Young & Benton, 2015).  It has been suggested that 

nonlinear HRV methods may complement, if not outperform, classical time and frequency 

domain methods (H. Young & Benton, 2015).  

A number of studies have compared linear and nonlinear HRV metrics (Francesco et al., 

2012; Schneider et al., 2017; H. Young & Benton, 2015).  The majority, however, have been 

related to HRV analysis in clinical diagnosis (Francesco et al., 2012).  A smaller number of 

studies have assessed the relative utility of these methods as compared to time and frequency 

domain methods in mental MWL research (Heine et al., 2017; Schneider et al., 2017; H. Young 

& Benton, 2015).  Few, however, have pursued this question in aviation-specific research.   

Statement of Problem 

A nonlinear method developed at the University of Iowa Operator Performance 

Laboratory (OPL), based on the transition probability variance (TPV) of the ECG, has been used 

successfully used in multiple previous studies (J. Engler & Schnell, 2012).  The method shows a 

promising capability to assess MWL with potentially higher sensitivity and diagnosticity than 

classical HRV methods.  Further, these previous studies have shown it can be successfully 

employed in live-flight settings and capture MWL variations in near real time (Schnell, Reuter, 

& Cover, 2017).  However, to date, the TPV method has not been compared to classical HRV 

methods on the same dataset.  

This research compares the TPV-based method to classical time and frequency domain 

HRV methods with ECG data harvested from a recent helmet-mounted display (HMD) study.  
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The study compared performance impacts of three candidate HMD symbologies in a live-flight, 

tactical Close Air Support (CAS) scenario.  The primary analysis presented herein focuses on the 

ECG data in this study and seeks to provide insight into the relative utility of various indices of 

MWL.  The end goal is to provide useful insights for risk mitigation in the design of current and 

future systems. 

Research Goals and Hypothesis 

This thesis aims to address the aforementioned research gap by comparing the TPV 

method to classical HRV methods on the same ECG data in a live-flight, operationally relevant 

task.  The specific aim is to explore how well the TPV method can characterize MWL in a 

tactically relevant flying task.  Further, it aims to explore how well various HRV methods can 

elucidate the MWL-driving elements of a task. 

It is hypothesized herein that the TPV-based MWL method will show increased 

sensitivity and diagnosticity compared to classical time and frequency domain methods in a short 

duration task with highly dynamic MWL characteristics. 

Contributions 

This research provides several theoretical and practical contributions.  It extends theory 

of HRV by exploring a relatively new nonlinear analytical method based on TPV.  The TPV 

method has shown promising results in previous studies and the analysis herein provides 

additional validation.  While these findings may pertain more to MWL research, further 

exploration of this method could prove useful in other domains, such as clinical diagnosis.   

Because of the applied study used as the basis for the analysis, this research weighs more 

heavily on practical contributions.  The utility of the TPV method is demonstrated in a live-flight 

operationally relevant context.  Thus, it has implications for research and flight test domains in 

which system performance in the “real-world” must be evaluated.  The HMD study focuses on 

SDO prevention.  The live-flight element is crucial for SDO research to produce the full 
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spectrum of novel sensory inputs generated by linear and rotational accelerations which 

contribute to SDO.  It also explores a method by which to infer MWL from the ECG in near real-

time.  Not only does this provide a useful analytical method for research settings, it may provide 

a useful method for modern applications of psychophysiological signals such as real-time 

operator state assessment and adaptive automation (Scerbo et al., 2001).  While this research 

does not explore operator state modeling, it validates that ECG signal may be a useful element to 

these efforts. 

Thesis Structure 

This thesis is structured as follows.  Chapter 2 expands on the theoretical background of 

MWL and its measurement with a focus on ECG-based methods.  Classical time and frequency 

domain measures are reviewed.  Nonlinear methods are introduced and the TPV method is 

explained in detail.  Chapter 3 provides a summary of the HMD study which is the basis of the 

HRV analysis to follow.  Key results are included which bear relevance to the research questions 

in this thesis.  Chapter 4 discusses the methodology for HRV analysis.  The final two chapters 

present results, discussion, and conclusions. 
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CHAPTER 2 – BACKGROUND AND LITERATURE REVIEW 

Mental Workload  

Mental workload (MWL) constitutes an enormous body of research spanning a half-

century in multiple human factors domains to include aviation, ground transport, and medicine 

(Wickens, 2017).  Despite its wide presence in the literature, there is no universally accepted 

definition.  It may be defined simply as the costs a human operator incurs in the performance of a 

task (Kramer, 1991), or the costs incurred accomplishing mission requirements (Hart, 2006).  

These “costs” refer specifically to the cognitive resources of the operator, which are finite and 

limited (Wickens, 2008).  When operator resources invested do not match task demands, 

performance is impacted.  Therefore, MWL is naturally an important consideration in a high-

stakes domain such as aviation (Wickens, 2002a).   

The theoretical underpinnings of the relationship between tasks and operator resources 

can be explained by Multiple Resource Theory (MRT) (Wickens, 1984).  MRT asserts that 

humans do not simply have one central pool of cognitive resources; rather, there are multiple 

pools that are utilized in parallel (Wickens, 2008).  Conflict, or interference, occurs when 

multiple tasks require the same resource, such as visual or auditory attention, or the tasks exceed 

demands of one or more resources.  Thus, MWL considerations are especially important in 

multitask environments such as in the cockpit of a single-pilot aircraft. 

External task demands and operator resources are the two primary determinants of MWL 

(Vidulich & Tsang, 2012).  Task demands may be driven by factors such as task complexity, 

time pressure, or environmental factors.  Operator resources consist of the available resources to 

support cognitive processes such as attention, memory, planning, and decision making (Vidulich 

& Tsang, 2012).  This resource-demand interaction is further moderated by operator skill and 

effort put forth while attending to tasks (Cain, 2007). 

The primary rationale for studying MWL is its relationship to performance.  The 

relationship is complex, in that increases in MWL do not necessarily result in decreased 
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performance.  As task demand increases, the operator may invest additional resources (e.g. 

effort, more efficient strategy) to cope with increased demand (Hockey, 1997).  It is at 

suboptimal levels of MWL, rather, that performance failures occur (M. S. Young et al., 2015).  

Overload results in distraction, insufficient processing capacity, and divided attention, while 

underload results in inattention or reduced alertness (Brookhuis & de Waard, 2010).  Thus, there 

is an optimum range of MWL associated with highest performance (Hancock, 1989).  This 

relationship between performance and MWL is shown in Figure 1.  “Activation level” represents 

to the level to which the operator invests resources to cope with task demands.   

 

Figure 1. Relationship between Activation Level, Workload, and Performance1. 

                                                 
1 Adapted from De Waard (1996) and M. S. Young et al. (2015) 
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Measurement 

This section provides a broad overview of common MWL assessment methods and their 

applications in aviation.  As the focus of this thesis is ECG-based methods, more detail on these 

methods will be described in the sections to follow. 

Design, evaluation, and optimization of aircraft systems require assessment of MWL.  

Though a seemingly simple endeavor, this comes with several challenges.  First, because it is an 

abstract construct, MWL must be inferred rather than directly observed.  Unlike the aircraft they 

fly, humans are not equipped with convenient “test points” to facilitate such measurement 

(Wilson, 1992).  Secondly, definitive acceptable limits of MWL have not been well defined.  The 

“redlines” indicating overload and underload continue to elude researchers to this day, such that 

even when MWL is quantified, it is difficult to say whether it is too much or too little (M. S. 

Young et al., 2015).  Thirdly, the vast inventory of measurement methods generated over the past 

half-century varies greatly in practicality, reliability, and validity, making selection of a method 

in any given context difficult (Wierwille & Eggemeier, 1993).  Lastly, measurements are 

impacted by skills, abilities, and effort put forth by the human operator.  A task may induce 

unacceptable MWL for a novice yet fall within acceptable limits for an expert (Casner & Gore, 

2010).  Despite these challenges, MWL assessment is a useful tool for designers to elucidate 

MWL characteristics of tasks and design alternatives.  MWL assessment methods fall into three 

general categories: subjective measures, primary and secondary task performance, and 

physiologic measures (Vidulich & Tsang, 2012). 

The most straightforward and widely-used method is to quantify task performance.  This 

can be accomplished by measuring performance in the primary task or measuring performance in 

a secondary task to infer spare capacity.  Primary task performance measures generally assume 

that speed and accuracy of performance will decrease with increased levels of MWL (Wierwille 

& Eggemeier, 1993).  Thus, measurements assume an acceptably low level of error and high 

level of efficiency (M. S. Young et al., 2015).  In aviation research, primary task performance is 
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often measured as error or accuracy with respect to flight technical parameters (e.g. airspeed, 

altitude, or bank angle, pitch rate, roll rate) or tactical parameters (e.g. bomb accuracy, missile 

tracking) (Gawron, 2008).  Secondary tasks (e.g. tracking, detection, mental math) may be 

included with the primary task, providing more diagnosticity than the primary task alone (Cain, 

2007). 

Researchers have noted several limitations of primary task performance measures.  As 

the operator compensates for increased task demands, stable performance can be maintained, 

reducing the sensitivity of the measure to variations in MWL (Wierwille & Eggemeier, 1993).  

Additionally, failures may impact the operator’s perceptions of MWL (Hancock, 1989).  

Criticisms of the secondary task method include intrusion or interference with the primary task 

and variance in skill levels in performance of the primary, secondary, or combination of the two 

tasks (Casner & Gore, 2010).  

Subjective measures gauge the operator’s perception of task demands.  These have the 

advantage of low-cost, high face-validity, and adequate sensitivity to changes in MWL levels 

(Wierwille & Eggemeier, 1993; Zhang, Zheng, Duan, Meng, & Zhang, 2015).  The primary 

disadvantage is that subjective measures tend to be more widely variable based on individual 

differences and are subject to bias.  Additionally, they may be considered intrusive, as task 

performance must be interrupted to measure. 

The most widely used subjective method is the NASA Task-Load Index (TLX) (Hart, 

2006).  The NASA-TLX is a multi-dimensional scale gathering operator estimates of perceived 

MWL during or immediately following task performance using a set of six variables which may 

be weighted based on operator perceptions.  A similar multidimensional method, the Subject 

Workload Assessment Technique (SWAT) technique, has also been commonly used in flight test 

settings (Reid, Potter, & Bressler, 1989).  Single-dimension, decision-tree based methods 

constitute another commonly used class of subjective scales.  Common scales include the 

modified Cooper-Harper scale and the Bedford Workload scale (Roscoe & Ellis, 1990). 
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The use of physiological variables in MWL research is based on the neurophysiological 

response to increase task demand, which is discussed in more detail in the following section.  

The principle advantage of physiologic methods is their objectivity and the ability to provide 

continuous, uninterrupted measurement over a given time interval (Longo, 2015).  However, 

they can often be expensive, analytically complex, and subject to confounding environmental 

variables (Longo, 2015). 

Cardiovascular measures, typically gathered via ECG, comprise the most commonly used 

physiological indices of MWL due to both validity, practicality, and ease of implementation 

compared to other physiological indices (Meshkati, Hancock, Rahimi, & M. Dawes, 1995; 

Scerbo et al., 2001).  Other common methods include electroencephalogram (EEG), eye-related 

measures (e.g. pupil diameter, blink rate), and galvanic skin response (GSR)  (Hsu, Wang, Chen, 

& Chen, 2015).  Additionally, other measures of the brain’s hemodynamic and electromagnetic 

activity, such as positron emission tomography (PET), functional magnetic resonance imaging 

(fMRI), and functional near infra-red (fNIR) spectroscopy have been investigated (Ayaz et al., 

2012). 

As noted earlier, a considerable challenge in MWL assessment is the selection of the 

most appropriate method or combination of methods in a given context.  Wierwille and 

Eggermeier (1993) outline several criteria that should be considered in assessing the value of 

MWL measurement techniques in flight test and evaluation: sensitivity, diagnosticity, intrusion, 

transferability, and implementation requirements.  

Sensitivity is simply the degree to which the technique can distinguish different levels of 

MWL.  For example, subjective measures may be sensitive in changes from low to moderate, yet 

insensitive from changes from moderate to high levels of MWL (Kramer, 1991).  Other 

measures, such as performance-based, may be insensitive at low levels of MWL as the operator 

invests additional effort.  Another important consideration noted by Kramer is the aspect of 

temporal sensitivity, or the ability of a measure to detect momentary changes in MWL.  
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Temporal sensitivity a valuable element of many physiologic and performance metrics which can 

be recorded continuously.   

Diagnosticity is the ability of the method to identify the cause of MWL, whether is it a 

specific cognitive resource or specific element of the task.  As it relates to MRT described above, 

this may refer to diagnosticity with respect to specific mental resource (e.g. visual or auditory) 

being utilized.  It can also refer to the element of the task driving MWL levels.  To this end, a 

measurement method with high temporal sensitivity (e.g. near real time), may also be diagnostic.  

Intrusion refers to the impact of a MWL measure on performance in the primary task.  In 

other words, an intrusive measure may produce artificially high measurements of MWL, a 

common criticism of, for instance, the secondary task method (Wierwille & Eggemeier, 1993).  

Transferability is the ability of a technique to be useful in various applications.  Lastly, 

implementation requirements refer to the equipment, instrumentation, and data collection 

procedures required for a given technique.  These, of course, must be appropriate for the task 

being evaluated.   

Psychophysiology of Workload 

Psychophysiology concerns the interrelationships between the physiological and 

psychological aspects of brain and behavior (Etzel, 2006).  These relationships provide the 

rationale for inference of MWL through monitoring operator physiology (Wilson, 2002b).  The 

human response to increased task demands elicits a predictable physiologic response.  Activation 

level, or arousal, refers to a state of preparedness associated with heightened activity in the 

nervous system and explains the global neurophysiological response (Roscoe, 1992).  Early 

research into the phenomenon of arousal, refined throughout the last century, suggested an 

“inverted-U” relationship between arousal level and performance (Yerkes & Dodson, 1908).  As 

Roscoe (1992) notes, although the concept of arousal over simplifies complex 

neurophysiological mechanisms, it provides an adequate and functional explanation of the 

relationship between task MWL and the variance in physiologic state. 
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The nervous system has two basic anatomical divisions: the central nervous system 

(CNS) and peripheral nervous system (PNS) (Guyton, 2006).  The CNS consists of the brain and 

spinal cord, while the PNS consists of the peripheral neural networks throughout the body 

(Guyton, 2006).  Each of these plays a role in governing the physiologic response to MWL.  

Central control originates through the stimulation of the reticular activating system (RAS), which 

results in increased alertness, improved information processing, and shorter reaction times 

(Roscoe, 1992).  Heightened arousal is then maintained through feedback mechanisms between 

the RAS, cortex, and hypothalamus (Roscoe, 1992).  Central control enables MWL inferences 

from the EEG, MRI, TCD, and other instruments directly monitoring brain activity.  The PNS 

provides inputs and executes actions initiated by the CNS (Wilson, 2002b).  The PNS is further 

divided into autonomic (ANS) and somatic (SNS) branches.   

The ANS is divided into sympathetic and parasympathetic branches.  The sympathetic 

branch is responsible for what is commonly known as the “fight or flight” response, which 

generally results in an increase in activation level.  The parasympathetic branch, or “rest and 

digest” mechanism, has the opposite effect.  In a resting state, parasympathetic influence 

normally predominates.  Both branches of the ANS influence cardiac function, eye activity, and 

electrodermal activity (Wilson, 2002b).  Because of this, monitoring certain variables related to 

these functions allows inference to ANS activity and thus, the response to MWL variations.   

Regulation of Heart Rhythms 

In the absence of external influence, the heart’s sinoatrial (SA) node, commonly called 

the “pacemaker,” generates heart beats at a regular interval (Guyton, 2006).  The regulation of 

heart rhythms, however, is a complex and dynamic process which is, in large part, a function of 

ANS activity.  Both the sympathetic and parasympathetic branches of the ANS innervate the 

heart tissue (Guyton, 2006).  Sympathetic modulation is accomplished through nerves arising 

from the spinal cord.  Release of norepinephrine in the sympathetic nerve endings results in 

increased rate of discharge in the SA node and increased excitability and conductivity of the 
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heart tissue.  Parasympathetic modulations flow through the vagus (tenth cranial) nerve and 

generate essentially the opposite effect (Etzel, 2006).  Release of acetylcholine from the vagal 

nerve endings decreases the rhythm of the SA node and decreases excitability of the heart 

musculature thereby slowing the transmission of cardiac impulses (Guyton, 2006).  The vagus 

nerve provides the primary ANS control of heart rhythms.   

The propagation of electrical activity during the cardiac cycle is reflected in the ECG 

signal (Schumacher, 2004).  ECG signals have been used in clinical and psychophysiological 

research for years and are well understood.  Each element of the ECG waveform reflects a 

different physical stage of the heartbeat (see Figure 2).  The P wave is generated by the 

depolarization of the SA node and contraction of the atria.  The QRS complex represents the 

contraction of the ventricles.  The peak of the QRS complex, or the “R peak,” is a common 

signal feature used in HRV analysis.  The R-R interval denotes the distance between successive 

heartbeats and is usually measured in milliseconds (ms).  The T wave represents the heart 

recovery of baseline electrical activity and the refilling of the atria.   

 

Figure 2. ECG Waveform2. 

There are numerous factors which produce constant variations in heart rhythms.  To a 

certain extent, these processes are reflected in different frequency bands of the ECG signal, 

                                                 
2 Adapted from Zhidong, Yi, and Qing (2011) 
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enabling spectral analysis of the signal.  The two bands of most importance in 

psychophysiological research are the high frequency (HF) band (0.15-0.4 Hz) and low frequency 

(LF) band (0.05-0.15 Hz).  Lower frequency components (<0.05 Hz) have been examined, but 

primarily in clinical applications, such as assessing risk of cardiac disease. 

Variation in the HF band is known as the respiratory sinus arrhythmia (RSA) and reflects 

parasympathetic mediation of respiration-related activity through the vagus nerve.  The 

relationship between ANS function and the RSA is well understood to be a reliable index of 

vagal control of the heart, and is the most conspicuous component of HRV (Tarvainen, 

Niskanen, Lipponen, Ranta-Aho, & Karjalainen, 2014).  The LF band is thought to reflect a 

combination of sympathetic and parasympathetic influence. 

While the ANS plays a predominate role in the regulation of heart rhythms, the cardiac 

system is influenced by other factors including thermoregulation, endocrine factors, blood 

pressure, and fitness level (H. Young & Benton, 2015).  As such, a great deal of work in the past 

several decades has advanced the notion that the cardiac system, and consequently heart rhythm 

generation, exhibits deterministically nonlinear properties (Govindan, Narayanan, & Gopinathan, 

1998; Owis, Abou-Zied, Youssef, & Kadah, 2002).  This is an important consideration for HRV 

analysis, described in the following section.  Despite the existence of nonlinear elements in the 

ECG signal, it has been common practice to use linear approximations, which may be unable to 

detect subtle nonlinear changes (H. Young & Benton, 2015). 

ECG Methods for Workload Assessment 

The two primary MWL measures derived from the ECG are heart rate (HR) and heart 

rate variability (HRV).  HR is the simplest method and generally increases with increases in 

MWL.  HRV is defined as the variability of normal-normal (NN) intervals, or variation between 

heart beats.  As MWL increases, HRV generally decreases (Roscoe, 1992).   

HRV analysis has been used to develop a wide range of metrics in both clinical and 

psychophysiological applications (Task Force, 1996).  These methods generally fall into three 



www.manaraa.com

16  
 

categories: time domain, frequency domain, and nonlinear methods.  Time and frequency 

domain methods have been more commonly used in MWL measurement and constitute what is 

herein referred to as “classical methods.”  These are summarized in  Table 1. 

Table 1. Time and Frequency Domain HRV Metrics*. 

Domain Metric Units Definition 

Time  

SDNN Milliseconds (ms) Standard deviation of all NN intervals 

RMSDD Milliseconds (ms) Root mean square of differences between 

adjacent intervals 

pNN50 Percentage or 

proportion 

NN50 count divided by the total number 

of NN intervals 

HRV TI No unit HRV triangular index 

TINN Milliseconds (ms) Triangular interpolation of the NN 

histogram 

Frequency 

LF Normalized units (nu) Power in the LF range (0.04-0.15 Hz) 

HF Normalized units (nu) Power in the HF range (0.15-0.4 Hz) 

LF/HF No unit Ratio LF / HF 

*Note: metrics presented in this table are limited to those included in this analysis. 

 

More contemporary metrics are based on the nonlinear elements of the ECG signal.  

Applications of these metrics have become commonplace in clinical HRV analysis to diagnose 

disease.  However, nonlinear metrics have not been fully explored in applications involving 

normal healthy individuals, such as in MWL research (H. Young & Benton, 2015). 

This section reviews common time and frequency domain measures of HRV.  A short 

summary of nonlinear methods is then provided.  The discussion of nonlinear methods, however, 

focuses on one method that is the subject of the research question in this thesis. 

Time Domain 

The mean value of HR or mean RR interval (the two are analytically equivalent) are the 

simplest metrics derived from the time series of RR intervals.  These metrics can either be 

analyzed via comparison of means or relative change from a baseline resting state.  Mean HR is 
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widely used but often criticized for its sensitivity to confounding factors such as respiration, 

physical exertion, and stimulants such as caffeine and nicotine (Roscoe, 1992). 

Lee et. al. measured incremental HR (difference in HR between resting and working 

states) in a Boeing 747 flight simulation study and concluded both HR and HRV to be consistent 

with NASA-TLX indices, concluding both variables to be sufficient predictors of MWL (Lee & 

Liu, 2003).  A similar study by Zhoe et. al. more recently produced similar findings comparing 

HR and HRV to NASA-TLX (Zhou, He, Wang, & Fu, 2014).  Some question the consistency of 

HR itself, however, due to its sensitivity to multiple factors such as physical exertion (Scerbo et 

al., 2001).  This presents limitations in aviation experiments which contain components of 

physical task demand.  However, HR measurement has proven reliable researching less 

physically demanding aviation-related tasks, such as Air Traffic Control (ATC) and Air Battle 

Management (ABM) (Strang, Best, & Funke, 2014; Vogt, Hagemann, & Kastner, 2006).  

Sensitivity of HR along with HRV was evaluated in a another simulator study of pilots 

completing instrument landing system (ILS) approaches (Mansikka, Simola, Virtanen, Harris, & 

Oksama, 2016).  The researchers concluded that both HR and HRV comparably sensitive to 

changes in MWL from baseline to high-MWL conditions. 

Time domain HRV metrics are derived from basic statistical analysis of the NN intervals 

in time series (Task Force, 1996).  Common metrics include the mean RR interval (or mean NN), 

the standard deviation of NN intervals (SDNN), the square root of the squared successive NN 

intervals (RMSSD), the number of successive differences in NN intervals differing by greater 

than 50 ms (NN50), and the percentage of the NN50 relative to all of the NN intervals in a given 

timeframe (pNN50).  Geometric indices may also be derived from the times series of NN 

intervals.  Two commonly used geometric indices include the HRV triangular index (HRV TI) 

and the triangular interpolation of the NN histogram (TINN). 

SDNN is a means to compute the overall variability of the RR series and is considered an 

appropriate measure of both short and long-term variability (Task Force, 1996).  Lower SDNN 

values indicate lower variability and higher MWL.  SDNN is calculated with the below equation.  
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The mean RR interval length is depicted by 𝑅𝑅̅̅ ̅̅  and the RR interval for each sample (j) in the 

recording is depicted by 𝑅𝑅𝑗.  The total number of RR intervals in sample is depicted by N. 

𝑆𝐷𝑁𝑁 =  √
1

𝑁 − 1
∑(𝑅𝑅𝑗 − 𝑅𝑅̅̅ ̅̅ )2

𝑁−1

𝑗=1

 

RMSSD is another common measure considered an appropriate measure of short term 

variability.  Likewise, lower RMSSD values indicate lower variability and higher MWL.  It is 

calculated by the below equation where 𝑅𝑅𝑗+1 − RRj denotes the difference between the length 

of jth RR interval and the successive interval. 

𝑅𝑀𝑆𝑆𝐷 =  √
1

𝑁 − 1
∑(𝑅𝑅𝑗+1 − RRj)2

𝑁−1

𝑗=1

 

PNN50 is simply a measure of the percentage of successive NN intervals differing by 

greater than 50 ms over a given recording period.  A 50 ms calculation is the most common 

interval used in this calculation, but other intervals have been used in different applications (e.g. 

20 ms).  Like the previous two metrics, lower PNN50 indicates lower variability.  The 

calculation is as follows, where NN50 is the total number of successive differences differing by 

greater than 50 ms and N is the total number of RR intervals in the time series: 

𝑝𝑁𝑁50 =  
NN50

N − 1
x 100% 

The time series of RR intervals can also be analyzed geometrically.  There are two 

common geometric methods.  The first, the HRV Triangular Index (HRV TI), measures the 

integral of the density distribution of NN intervals (i.e. the total number of NN intervals) divided 

by the maximum of the distribution.  Height of the histogram, naturally, is affected by size of the 

bins when generating the histogram and therefore must be consistently selected when comparing 

time intervals. 
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𝐻𝑅𝑉 𝑇𝐼 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑁 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑁 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑖𝑛 𝑚𝑜𝑑𝑎𝑙 𝑏𝑖𝑛
 

The second method is the triangular interpolation of the NN histogram (TINN) which is 

similar to the HRV TI.  To calculate TINN, the baseline width of the NN interval distribution is 

measured as the base of a triangle, which is then used to interpolate (i.e. approximate) the 

distribution.  The unit for the TINN is ms. 

Both statistical and geometric methods for HRV in the time domain are analytically 

simple and well-validated measures.  The primary drawback is their sensitivity to overall 

recording length.  In most cases, they are not well suited for short duration recordings (i.e. must 

have a larger number of NN intervals) (Task Force, 1996).  Further, they are not well suited for 

comparing recordings of unequal length (Etzel, 2006).  Geometric methods are resistant to 

sample quality issues but are sensitive to differences in parameter selection in calculation (e.g. 

bin width of the NN histogram) (Task Force, 1996). 

Frequency Domain 

Frequency analysis is conducted by decomposing the ECG into sinusoidal waves to 

ascertain its frequency components (Schumacher, 2004).  Common techniques include Fast 

Fourier Transforms (FFT), periodogram, and autoregressive (AR) modeling (Schumacher, 2004).  

Newer methods allow for accurate time varying analysis using moving window techniques, such 

as the Kalman smoothing method proposed by Tarvainen, Georgiadis, Ranta-aho, and 

Karjalainen (2006).  Spectral decomposition allows for distinction between relative sympathetic 

and parasympathetic modulations of heart rhythm by measuring the amplitudes of the ECG 

interval signal at different frequencies (Lean & Shan, 2012). 

As discussed in the previous section, the LF and HF components are of most interest for 

MWL applications.  While both bands appear to show modest sensitivity, researchers have 

produced mixed conclusions as to which band is more diagnostic (Scerbo et al., 2001).  The HF 

component (0.15-0.4 Hz), or RSA, is dominated primarily by parasympathetic modulations and 
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is associated with mechanical and reflex respiratory activity components and is usually 

interpreted as reflecting oscillations caused mainly by changes in vagal tone of heart rhythm.  

The LF component (0.04-0.15 Hz) reflects both sympathetic and parasympathetic modulations 

(Berntson et al., 1997).  The LF/HF ratio is useful as it can be interpreted as a reflection of 

sympathovagal balance or sympathetic modulation (Tarvainen et al., 2006).  Spectral power in 

the respective bands may be presented as a percentage of total power or normalized units. 

Generally speaking, frequency domain methods are preferred over time domain methods 

for short-duration recordings (Task Force, 1996).  However, it is suggested that that the 

recording length should last at least ten times the length of the lower band of the frequency band 

being analyzed.  This equates to approximately 1 minute for the HF component and 2 minutes 

for the LF component (Kuo & Chen, 1998). 

Nonlinear Domain 

Nonlinear analysis of HRV is based on the notion that the cardiovascular system, 

particularly with respect to heart rhythm generation, is complex, dynamic, nonlinear, and 

nonstationary (Schumacher, 2004).  Therefore, analysis purely in the linear domain may not 

capture all the underlying patterns exhibited in the ECG signal.  The introduction of nonlinear 

dynamics (NLD) into HRV analysis dates back to the 1980’s (Goldberger & West, 1987).  Since 

then, a considerable amount of work has been done to explore the nonlinear properties of heart 

rhythms (Voss et al., 2009).  Common methods include Poincaré plots, approximate entropy 

(ApEn), sample entropy (SampEn), correlation dimension, detrended fluctuation analysis (DFA), 

and recurrence plot (RP) analysis (Tarvainen et al., 2014).  To date, applications of these 

methods have become commonplace in clinical applications of HRV analysis (Francesco et al., 

2012), but have been less prominent psychophysiological research (H. Young & Benton, 2015). 

However, a small number of studies have employed nonlinear HRV analysis in the 

domain of psychophysiological research.  Sammer (1998) demonstrated that nonlinear properties 

of HRV may be useful in discriminating mental and physical load.  More recently, Bornas et al. 
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(2013) conducted a study to evaluate attentional control (AC) in healthy students using 

correlation dimension (CD), fractal-like properties, and sample entropy.  The authors found 

positive correlations with AC and several of these properties, concluding they may be useful in 

psychophysiological applications. 

Schneider et al. (2017) conducted a study to assess MWL of emergency room physicians 

using 18 different linear and nonlinear measures of HRV. Their results indicated permutation 

entropy outperformed all linear HRV metrics in terms of receiver operating characteristics curve 

(AUC), leading them to conclude nonlinear metrics provide sensitive and valid measures of 

MWL.  H. Young and Benton (2015) conducted a study relating linear nonlinear indices to 

cognition and mood, producing similar conclusions.  In the aviation domain, one study compared 

linear HRV metrics to Fuzzy Approximate Entropy (fApEn), noting correlations between the two 

domains (Strang et al., 2014).  Sauvet et al. (2009) utilized linear HRV and Poincaré plots to 

analyze pilot MWL in a multileg cross-country flight, also producing comparable results.  These 

initial studies show promising validity of nonlinear methods; however, further research is needed 

to fully evaluate their utility. 

The focus of the analytical portion of this thesis is on a novel nonlinear method 

developed by the University of Iowa OPL.  This method is based on transition probability 

variances (TPV) of ergodic transition matrices (ETM) derived from the ECG signal.  The method 

is based on work by J. J. Engler (2011).  It has been used in multiple previous studies and has 

shown promise in detecting MWL changes with high temporal sensitivity. 

To estimate MWL based on TPV, there are several steps.  The raw ECG signal is first 

transformed into multidimensional embedded phase space.  This type of transformation is based 

on the embedding theorem first conceived by Takens (1981) and there is precedent for its 

application to the ECG signal (Richter & Schreiber, 1998).  Specifically, the scalar time series is 

transformed into a vector using a time-delay parameter (τ) and embedding dimension (n).  A 

mutual information function is used to calculate the time delay parameter and the embedding 

dimension is calculated using a false nearest neighbor technique.  An example of ECG and its 



www.manaraa.com

22  
 

embedding phase space are shown in Figure 3.  In this example, the time delay (τ) is 12 seconds.  

This embedding phase space is extracted from the Cognitive Assessment Toolset (CATS) 

architecture (discussed in Chapter 3). 

 

Figure 3. Embedding Phase Space for ECG Signal (extracted from CATS). 

Complex chaotic systems can be represented in more simplified manner with a technique 

called coarse graining applied to partition the embedding phase space, creating discrete states.  

Thus, the n-dimensional hypercube contains a finite number of bins, or cells.  A simplified 

coarse graining of the embedding phase shown in Figure 3 is shown in Figure 4.  From this, a 2-

dimesional matrix of transitional probabilities is created, which is referred to as the ETM.  

Variance within the ETM can be summarized with a single metric, the transition probability 

variance (TPV).  This is typically calculated as an average value over a buffer of samples (e.g. 2 
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seconds, or 1024 samples at 512 Hz).  The inverse of this TPV is thought to vary proportionally 

with changes in MWL.   

 

Figure 4. Coarse Grained (40 x 40) Representation of the Phase Space in Figure 3.  

In the OPL implementation of this method, which is used in the HMD study described in 

Chapter 3, TPV is used to calculate a relative MWL value (hereafter referred to as TPV relative 

workload).  This is accomplished by calculating baseline values during a resting state and 

maximum values recorded during the recording of interest.  Between these bounds, an arbitrary 

scale is created (e.g. 0-10) to indicate the relative change in MWL.   

A significant apparent advantage of the TPV method over classical time and frequency 

domain methods is its ability to measure MWL with very high temporal sensitivity.  As values 

can be generated on the order of a few seconds, this method can detect momentary, sharp 

fluctuations in MWL that the literature would indicate classical time and frequency domain 

methods cannot.  This is important in certain applications such as the research study presented in 
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Chapter 3.  Despite its promise, the TPV method has never been compared empirically to 

classical time and frequency domain methods on the same dataset.  This research aims to address 

this question.   
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CHAPTER 3 – SUMMARY OF HMD STUDY 

A study was conducted to compare three off-boresight (OBS) helmet-mounted display 

(HMD) symbology sets (Schnell, Reichlen, & Reuter, 2017).  This chapter provides a summary 

of the background, objectives, methods, key results, and conclusions.  The primary results from 

this study have been previously reported.  The workload data collected served as the basis for the 

analysis presented in Chapter 4 – Chapter 6 of this thesis. 

Background 

This study was motivated by the fact that throughout history the technological landscape 

of a fighter airframe changes dramatically during its life cycle to continually provide both 

tactical and safety of flight improvements.  In some cases, new technologies, intended primarily 

to bring tactical benefits, introduce new and unforeseen risks.  One such risk in fighter-type 

aircraft is spatial disorientation (SDO).  SDO has been a costly, deadly problem across all 

domains of aviation, factoring in as many as one third of serious mishaps and having a nearly 

100% fatality rate (Gibb, Ercoline, & Scharff, 2011).  Further, it has affected the fighter 

community at a disproportionately high rate (Lyons, Ercoline, O’Toole, & Grayson, 2006).   

This study contributed to the development and of Helmet-Mounted Display (HMD) 

symbologies displaying ownship status information in the OBS regime.  The OBS regime is 

defined as the portion of the pilot’s visual field of regard which is outside of the traditional 

Heads-Up Display (HUD), or in the case of modern HMD systems, a virtually rendered HUD 

(vHUD) (see Figure 5).   Attitude information is especially important for SDO prevention.  In the 

absence of reliable visual references in the external environment, attitude symbologies constitute 

the single means by which a pilot may orient in relation to the Earth’s surface.   
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Figure 5. Off-Boresight vs. vHUD FOV. 

Previous research has shown that displaying information in the OBS regime changes 

pilots’ scanning behaviors; pilots tend to look OBS further and for longer durations (Geiselman, 

1999).  Risks associated with these behavior changes in relation to SDO have not been well 

characterized for modern HMD systems.  Further, this study was partially motivated by the fact 

that certain HMD systems currently in use do not contain attitude symbology in the OBS regime.  

The objective was to characterize this risk as a function of symbology type during a live-flight 

operational task that elicited OBS visual requirements.  The scenarios developed were intended 

to represent operationally demanding tasks anticipated to present SDO risk in 5th generation 

fighter aircraft. 

Methods 

Participants 

In the original design of experiment, a total of 10 subject pilots were sought.  However, 

due to unforeseen circumstances, 11 subjects participated in total.  This was because one subject 

could only complete sortie, so an additional subject was recruited to complete two additional 

sorties.  All subjects were current and qualified military pilots from a variety of airframes, to 
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include the A-10, B-1, C-130, F-16, FA-18, F-22, and F-35.  Preference was given to pilots with 

air-to-ground (A/G) tactical experience to facilitate execution of the experimental scenarios.  

Additionally, subjects had mixed previous experience with operational HMD systems, such as 

the Joint Helmet Mounted Cueing System (JHMCS), Scorpion HMD, and F-35 HMD.  The 

original design intended to balance the subject pool by previous HMD experience, having 5 

subjects with previous HMD experience and 5 without.  Due to recruitment and timeline 

constraints, this balance was not achievable.  Of the 11 subjects, 3 had no previous HMD 

experience and 8 had experience with at least one of the HMD variants listed above. 

Apparatus 

The experimental aircraft was an Aero Vodochody L-29 Delphin operated by the OPL.  It 

is a single engine, 2-seat jet trainer aircraft capable of high performance maneuvering 

representative of fighter aircraft.  The cockpit is highly instrumented with state of the art 

avionics, simulated weapons, and simulated radar systems.  Additionally, the aircraft is outfit 

with human performance assessment equipment to allow collection of flight control inputs, 

physiologic data for MWL assessment, head-tracking data, and 4-channel video and audio 

recording.  The L-29 is an aircraft-in-the-loop (AIL) simulator in addition to a live-flight 

experimental aircraft.  This capability allowed subjects to familiarize with the aircraft, HMD, and 

cockpit avionics in the experimental environment on the ground prior to the live-flight scenarios.   

During live flight, the Safety Pilot (SP) flew in the front cockpit, serving as the pilot-in-

command (PIC), and was ultimately responsible for safe flight operations.  The SP controlled the 

aircraft during all non-experimental phases of flight (engine start, taxi, takeoff, navigation to test 

area, and landing) and handled all coordination with air traffic control (ATC).  The experimental 

pilot (i.e. subject) flew in the rear cockpit and took control of the aircraft during the experimental 

scenarios.  The aircraft was data-linked to a ground station at the OPL enabling communication 

with the experimental payload controller (EPC).  The EPC coordinated execution of the 

experiment and managed data collection from the ground-based station.  
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Subjects were equipped with a fifth-generation fighter representative HMD, integrated 

into the L-29, with magnetic head tracked graphics processor (Figure 6).  To simulate a 

nighttime environment, a canopy view limiting device (CLVD) and forward view limiting device 

(FVLD) were installed in the rear cockpit to block the entrance of ambient light.  The simulated 

environment was projected onto the HMD Organic Light Emitting Diode (OLED) imagers in 

monochrome green to mimic the visual experience of using a night vision device such as the F-

35 Distributed Aperture System (DAS).  The HMD combiner presented imagery as a biocular, 

overlapped image at 1280 x 1024 pixels on a 30 x 40 degrees field of view.   

 

Figure 6. Representative 5th Generation HMD Used in Study. 

The L-29 rear cockpit contains a 15-inch head-down display (HDD) with which the 

subject pilot could control the simulated weapons systems by selecting the type and quantity of 

ordinance.  The HDD also provided additional situation awareness information including an 

electronic attitude-direction indicator (ADI) and horizontal situation display (HSD).  The 

standard HDD configuration for this study, with the weapons selection page on the left and HSD 

on the right, is shown in Figure 7.  In addition to touch screen control, the pilot could also 
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manipulate these displays via the hands-on throttle and stick (HOTAS) controls integrated into 

the rear cockpit.   

 

Figure 7. Head-Down Display (HDD) 

Real-world flying operations were conducted in local Iowa airspace between 

approximately 10,000-17,000 ft Mean Sea Level (MSL).  Using the upfront control panel in the 

rear cockpit, the subject pilot would lateral proxy the simulated environment to a mountainous 

location in Afghanistan.  Depending on real-world airspace constraints, the subject would 

typically vertical proxy approximately 5,000 down, meaning simulated altitude would be lower 

than real-world altitude, to facilitate the experimental scenarios.   

Figure 8 and Figure 9 depict the physiological data collection set-up.  ECG was collected 

using the Nexus-4 physiological monitoring system connected to the L-29 onboard computer via 

Bluetooth (Figure 8).  ECG electrodes were placed in a three-lead configuration worn under a 
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standard Nomex flight suit and cotton t-shirt.  ECG data was sampled at 512 Hz.  The Nexus 

monitor was stowed in the subject pilot’s flight suit pocket during flight (Figure 9).   

 

Figure 8. ECG Sensor System and Lead Placement. 

 

Figure 9. Subject Helmet and Sensor Configuration. 

Nexus-4 Stored 

in Leg Pocket 
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Data was collecting using the OPL-developed Cognitive Assessment Toolset (CATS).  

The general flow of information is shown in Figure 10.  Aircraft state and physiologic data were 

collected and stored in a time-stamped relational database.  In this study, the CATS architecture 

facilitated data collection, synchronization, and analysis. 

 

Figure 10. High Level Data Flow Diagram of CATS System on L-29. 

Test Symbologies 

This study examined three candidate OBS symbology sets, which served as the 

independent variables in the experiment:   

1) Current Display Format (CDF) 

2) Distributed Flight Path Reference (DFR) 

3) Non-Distributed Flight Path Reference (NDFR) 

These symbologies appeared in the HMD OBS regime, i.e. while the subject looked more 

than 15 degrees laterally and/or 25 degrees vertically from the aircraft center line (boresight 
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cross).  The principle difference between the three conditions was the display ownship 

information, specifically aircraft attitude, altitude, airspeed, and heading.  The DFR and NDFR 

conditions contained an additional attitude symbol referred to as an Arc Segmented Attitude 

Reference (ASAR).  The ASAR was comprised of a fixed aircraft symbol and a dynamic earth 

reference symbol that would rotate in response to roll and grow or shrink in response to pitch 

changes.  Two tick marks on the ends of the aircraft symbol depicted the nearest horizon.  

During straight and level flight, the ASAR would be a semicircle below the aircraft symbol with 

the ends touching the tick marks.  For a full description of the symbology, see Geiselman (1999).  

The ASAR was displayed in a fixed position in the upper right corner of the pilot’s OBS field of 

view in both the DFR and NDFR conditions.  On the aircraft centerline axis, a virtual Heads-Up 

Display (vHUD) was displayed (Figure 11) in all three conditions.   

 

Figure 11. Monochrome Green Depiction of Virtual Heads-Up Display (vHUD). 
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The CDF, shown in Figure 12, was essentially the control condition.  This symbology set 

is representative of what is currently in-use in certain fifth generation fighter HMD systems.  

Head-heading, airspeed, and altitude are displayed along with an aiming reticle which represents 

the center of the pilot’s field of view.  Of note, there is no attitude reference. 

 

Figure 12. Current Display Format (CDF) Symbology. 

Figure 13 shows the DFR.  In this condition, the ASAR and fixed aircraft symbol are 

displayed in the upper right corner of the display FOV.  Airspeed and altitude are “distributed” 

around the center of the FOV.  Aircraft heading is not included. 
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Figure 13. Distributed Flight Path Reference (DFR) Symbology. 

The NDFR is depicted in Figure 14.  Unlike the DFR, airspeed and altitude are 

superimposed on the ASAR along with aircraft heading. 

 

Figure 14. Non-Distributed Flight Path Reference (NDFR) Symbology. 
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Experimental Scenarios 

There were a total of three scenarios which occurred on three separate flights.  All 

scenarios were designed with the basic intent of simulating operationally realistic mission tasks, 

specifically those which elicited OBS head movements.  The three scenarios were set in a 

simulated nighttime environment and accordingly labeled N1, N2, and N3.  The selected mission 

was Close Air Support (CAS) in which the aircraft was under the operational control of a 

ground-based Joint Terminal Air Controller (JTAC) who directed weapons delivery to ground 

targets.  The scenarios were designed to align with Joint Publication (JPUB) 3-09.3, Close Air 

Support, and were constructed with the assistance of fighter subject matter experts (SME).  The 

EPC served as the JTAC for all scenarios and utilized a script developed by fighter CAS SMEs.  

Recent operational experience in fighter CAS was considered in the selection of subject pilots to 

alleviate the need to provide additional training. 

All scenarios were Type II control, bomb on target (BOT) attacks.  This differs from a 

bomb on coordinate (BOC) type attack in which a weapon would be delivered to a 

preprogrammed location with the aid of GPS.  In a BOT attack, the JTAC “talks on” the pilot 

visually to the target by issuing a series of instructions to reference objects or features in the 

target area (e.g. buildings, roads, rivers, etc.) while the aircraft loiters within visual range of the 

target area.  The pilot is eventually funneled to the target and confirms he/she has visually 

acquired it with the JTAC.  Both the JTAC and pilot are often aided with common printed maps 

or products (i.e. “placemats”) based on gathered intelligence of the target area.  In this 

experiment, the pilot and JTAC both had available the map shown in Figure 15.  Note that the 

callout balloons for numbered building, building group, and echo point were not included in the 

actual experimental map.  This map was referred to as “Placemat Alpha 01” during the 

experimental scenarios. 

BOT attacks were specifically chosen over BOC attacks to necessitate OBS head 

movements since BOC attacks would primarily require interaction with displays and sensors up 

front in the cockpit.  This required the pilot to perform the search task and maintain control of 



www.manaraa.com

36  
 

the aircraft while looking down and to the side of the aircraft.  In the mission brief, the subject 

pilots were instructed to execute “left-hand” patterns during the talk-on phase.  Thus, all talk-ons 

occurred with the pilot searching for the target off the left side of the aircraft.  This 

standardization proved to be useful in the interpretation of flight technical data. 

The N1, N2, and N3 scenarios were designed to have progressively higher complexity.  

In the N1 scenario, there was only one target per symbology.  In addition, the JTAC issued a 

“floor” altitude restriction of 9,000 ft Mean Sea Level (MSL).  In the N2 scenario, the pilot was 

given an altitude block of 9,000-11,000 ft MSL and had to perform an additional show of force 

(SOF) in addition to dropping simulated ordinance for each symbology.  The N3 scenario had 

same restrictions as N2 but introduced clouds, decreasing the presence of visual cues.   

 

Figure 15. Local Map (Placemat Alpha 01) Used by JTAC and Subject. 
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Data Collection Procedures 

Upon arrival at the OPL, subjects were given a familiarization brief that had been 

emailed to them prior for review.  The briefing included an overview of the study and test 

symbologies, local area flying procedures, cockpit and equipment familiarization, and 

emergency egress procedures.  Subjects were equipped with ECG sensors and then given a 

familiarization simulator session in the L-29 (on ground in sim mode).  As this was for 

familiarization only, no data was collected in simulator mode.   

Analysis Methodology 

During the execution of the experiment and initial phases of analysis, it became clear that 

there were significant effects of sortie (N1, N2, N3) on flight technical and MWL performance 

metrics that were not consistent with the intentions of the experiment.  The design of experiment 

(DOE) intended for the first sortie (N1) to be the easiest and for the third sortie (N3) to be the 

most difficult.  However, the opposite effect was observed.  This was likely due to learning 

effects, such as progressively greater familiarity with the flight characteristics of the L-29, 

onboard weapons systems, and the simulated operational environment (i.e. target area).  It is 

possible the overall experience level of the subject pilots contributed to this learning effect 

occurring more quickly than expected.  As a result, effects on dependent variables were 

essentially washed out on the second and third sorties.  For these reasons, the analysis focused 

solely on the first sortie (N1).  Given the fact that CAS missions must often be executed in 

unfamiliar environments in real-world combat, the conclusions gleaned from analysis of this 

sortie have important practical implications.   

Within the N1 sortie, the analysis was further narrowed to the talk-on portion of each 

attack, despite the fact that the situation report (SITREP) and 9-Line (attack order) exchanges as 

well as weapons delivery phases were initially examined.  The rationale for this was two-fold.  

First, SITREPs and 9-Lines were excluded because only one was issued per subject on the N1 

sortie.  This resulted in an imbalance and insufficient data for comparisons between 
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symbologies.  Second, initial analysis revealed that weapons delivery was primarily 

accomplished while the pilot was looking through vHUD and not OBS.  Therefore, weapons 

delivery metrics provided little insight into performance effects of the OBS symbologies.   

Due to technical issues during the execution of the experiment, a small amount of data 

was lost.  For the N1 sortie specifically, aircraft state data (flight technical) was lost for Subject 2 

and ECG data was lost for Subject 6.  Because of this, despite having 11 subjects fly the N1 

sortie, for results relating to flight technical performance and ECG-based workload, there were 

10 subjects.  

Results and Discussion 

This section provides an overview of the most significant findings from the study.  Refer 

to the full report for additional metrics not summarized below.  These were selected for their 

relation to MWL analysis in this thesis.  The following results are presented and discussed: task 

duration, flight technical (pitch and roll rates), and workload.  For the full analysis refer to 

Schnell, Reichlen, et al. (2017). 

Task duration 

Time required to complete the talk-on phase was compared between symbologies.  As 

Figure 16 shows, the NDFR and DFR facilitated a shorter duration talk-on than the CDF.  GLM 

ANOVA showed a significant effect of symbology on talk-on duration (F2,20=4.64, p=0.022). A 

post-hoc Tukey t-test indicated a significant difference (shorter time) for the DFR compared to 

the CDF (t=-2.965, p=0.0201) but not the NDFR (t=-2.091, p=0.1170) average talk-on durations.  

This result was of great practical significance.  It demonstrated the tactical advantage of the 

symbology by showing a difference in how efficiently the pilot was able to acquire the target as a 

function of symbology, and therefore execute the attack in a shorter period of time.  This was an 

important result with respect to the MWL analysis, as described below.  Despite the DFR 

condition eliciting the highest MWL, it facilitated the most efficient execution of the task.   
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Figure 16. Mean Talk-On Duration for N1 Sortie by Symbology. 

Flight Technical 

Flight state data from the L-29 was harvested to analyze flight technical performance.  In 

this applied experimental setup, strict flight technical parameters were not dictated.  The pilots 

were simply asked to comply with JTAC instructions and execute tasks as if they were in a real 

combat environment.  There were altitude blocks assigned by the JTAC, but deviations were 

rarely observed.  This fact made analysis of flight technical performance more complicated since 

as simple flight technical error could not be calculated.  Given the overall aim of this study was 

SDO prevention, the analysis sought to derive precursors of unusual attitudes.  As such, the 

exploration of aircraft state parameters focused on the pilot’s ability to maintain stability of the 
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aircraft throughout the talk-on.  Parameters explored included aircraft attitude measures (bank 

angle, pitch angle, flight path angle) and their derivatives (roll rate, pitch rate).   

Roll and Pitch Rates 

Roll rate was used to infer the intensity with which the subject pilots made lateral side-

stick inputs.  The focus remained on the talk-on phase of the N1 sorties.  The subjects were 

instructed to orbit the target area in a “left-hand” orbit, which generally required a sustained left 

bank to visually search the target area.  The experiment did not prescribe a precise bank angle. 

The subjects simply had to control the aircraft as they would in the real-world equivalent task.  

Maximum roll rates observed in the right and left directions during the talk-on period for 

each symbology were analyzed.  The data was tested with a Kolmogorov-Smirnov (Right 

direction: KS=0.126,p>0.15; Left Direction: KS=0.119,p>0.15) and found to satisfy the 

normality assumption.  A GLM AVOVA found a statistically significant effect of symbology on 

maximum right roll rate (F2,18=6.91, p=0.006).  A post-hoc Tukey t-test indicated a statistically 

significant difference between the CDF and the DFR (t=-3.292, p=0.0108) and the NDFR (t=-

3.142, p=0.0148).  These results are shown in Figure 17.  Because the subject pilots’ goal in the 

talk-on was to maintain aircraft control while in a left-hand orbit, right stick inputs were 

interpreted as “corrective”, with the intent to decrease bank angle.  A higher rate indicated a 

more aggressive correction.  It was suspected that more aggressive corrections in the right 

direction observed in the CDF condition were in response to unintentionally steep bank angles 

that developed in the absence of attitude information while looking OBS.  

Left roll rates also showed a nearly significant effect of symbology (F2,18=3.27, p=0.061) 

as shown in Figure 18.  These inputs steepened or increased bank angle while orbiting around the 

target area.  This finding is consistent with the right roll input finding above, in that lower 

attitude awareness would necessitate more corrective control inputs to compensate for 

unintentional shallow bank angles.  Together, these two metrics suggest that EPs were able to 
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maintain more consistent control of bank angle with the DFR and NDFR symbologies when 

compared to the CDF.  

 

Figure 17. Average Maximum Right Roll Rate by Symbology. 
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Figure 18. Average Maximum Left Roll Rate by Symbology. 

Examination of pitch rate revealed similar results.  Higher values were interpreted as 

corrective inputs in response to undesired pitch attitudes and/or undesired climb/descent rates, as 

it was assumed the subject pilots were trying to maintain level flight.  A Kolmogorov-Smirnov 

test (K=0.104, p>0.015) of this data indicated the normality assumption could be made.  GLM 

ANOVA indicated a statistically significant effect of symbology for maximum observed pitch 

down rates (F2,18=6.79, p=0.006) but not significant for pitch up rates (F2,18=1.15, p=0.34).  A 

Post-hoc Tukey t-test showed a statistically significant difference in maximum pitch–down rate 

between the CDF and DFR (t=-3.594, p=0.0056) and nearly significant difference between the 

CDF and NDFR (t=-2.50, p=0.055).  As with roll, it appears that pitch control is better with the 
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DFR when compared to the CDF or NDFR test symbologies.  These results are shown in Figure 

19 and Figure 20. 

 

Figure 19. Average Maximum Pitch Up Rate by Symbology. 
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Figure 20. Average Maximum Pitch Down Rate by Symbology. 

Workload and Situation Awareness 

MWL and situation awareness were assessed subjectively using the Bedford Workload 

Scale and Situation Awareness Rating Technique (SART) respectively.  Subject pilots completed 

these questionnaires verbally following each symbology condition.  Mean values for each 

symbology condition were compared.  A Kolmogorov-Smirnov test indicated that the normality 

assumption could be made for the Bedford (KS=0.03, p>0.15) and the SART data (KS=0.021, 

p>0.15).  Subjective workload showed no significant effect of symbology.  The GLM ANOVA 

on the SART ratings indicated a statistically significant (F2,78=5.99, p=0.004) effect of 

symbology.  Post-hoc pairwise comparisons showed significantly higher SART scores for the 
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NDFR condition (t=3.43, p=0.0027) and nearly significant for the DFR condition (t=2.03, 

p=0.11) compared to the CDF.  These are summarized in Table 2.  

Table 2. Workload and Situation Awareness Subjective Measures. 

 Bedford SART 

CDF 4.75 7.0 

DFR 4.0 7.75 

NDFR 4.0 8.0* 

* denotes statistically significant difference to CDF  

ECG was recorded for each subject during all sorties.  The portions from the talk-on 

phase were analyzed and used to calculate TPV-based relative workload.  In this initial data 

analysis, mean values of N1 talk-on phases were compared.  The below empirical CDF (Figure 

21) shows a general trend of higher MWL in the DFR and NDFR conditions.  However, this did 

not reach a level of significance.  These results are elaborated in the remainder of this thesis.   
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Figure 21. TPV-based Relative Workload by Symbology. 

Conclusions 

The results of this study effectively differentiated performance impacts of the three 

symbology sets as they related to SDO prevention.  Analysis of task duration indicated that the 

DFR and NDFR facilitated a faster and more efficient talk-on than the CDF.  This finding is of 

tactical significance as time is of the essence in real-world CAS scenarios.  The flight technical 

data, namely roll and pitch rates, generally show that the DFR enabled the most stable control of 

the aircraft during OBS activities.  Both the DFR and NDFR outperformed the CDF in this 

regard.  These findings support the conclusion that the ASAR may be beneficial in preventing 

unusual attitudes from developing and leading to SDO in tactically demanding OBS visual tasks 

when compared to the CDF. 
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CHAPTER 4 – ANALYSIS METHODOLOGY 

This chapter details the methodological approach for the HRV analysis.  The objective 

was two-fold.  First, it sought to explore the utility of the TPV method relative to classical HRV 

methods in a live-flight tactical setting.  Second, it sought to provide additional insights on MWL 

characteristics of the candidate HMD symbologies as discussed in the previous chapter.  The 

approach utilized mixed-methods and was organized in three levels described below. 

Three Level Approach 

This comparative analysis used mixed methods (quantitative and qualitative) and was 

approached on three levels of granularity.  At the first and highest level, all HRV methods 

considered were used to calculate and compare mean values for the talk-on portion of the N1 

sortie for all subjects.  This level of analysis compared sensitivity of the HRV metrics in 

consideration.  At the second level, three subjects of interest were chosen because analysis of 

video and subjective feedback indicated considerable variance in MWL between the three 

symbology conditions.  At this level, empirical cumulative distribution functions (CDF) of the 

time series of LF power were compared to the TPV method to examine whether the distribution 

of values over time could elucidate MWL characteristics between symbology conditions.  The 

third level of analysis drilled further down to significant events.  In this analysis, four special 

case talk-ons containing significant events determined to drive momentary changes in MWL 

were selected.  For these events, individual talk-on portions selected were plotted to show HRV 

metrics’ response momentary MWL variations (on the order of ~30 seconds) when plotted in 

time series.  The first level of analysis was purely quantitative while the second and third levels 

focused on qualitative insights.  Each level sought to both compare HRV metrics and supplement 

the analysis of the HMD study. 

The analysis used two basic criteria for assessment: sensitivity and diagnosticity.  

Sensitivity of measures was assessed by the degree to which the measure can distinguish levels 
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of MWL between the candidate symbologies.  Diagnosticity was assessed by the degree to which 

the method could distinguish individual task elements driving changes in MWL. 

The rationale for conducting this analysis in conjunction with the previously discussed 

HMD study was that is representative of many of the challenges associated with MWL 

measurement in tactically relevant settings.  There are several elements which make this dataset 

unique amongst settings in which physiologic measures are applied.  First and foremost, the 

study was designed to represent a real-world CAS mission, which makes findings bear 

operational relevance.  Second, because this study was conducted in live flight, the sensor 

ensemble needed to be equipped in such a way that it was compatible with a real-world flight 

equipment ensemble.  Third, the durations of the time periods of interest for comparison were 

variable in length, which is often considered problematic for HRV analysis.  Fourth, the initial 

analysis indicated subtle MWL differences between test symbologies, making this dataset useful 

for rigorously evaluating sensitivity.  For these reasons, this analysis provides useful insights for 

evaluating design alternatives in a tactically relevant setting. 

Experimental Data 

To maintain consistency with initial analysis of the HMD study, data analyzed herein was 

extracted from only the talk-on portion of the N1 sortie.  Both raw ECG signals and calculated 

TPV-based workload values from the previous analysis were utilized.  Raw ECG signals were 

processed and used to calculate time and frequency domain HRV metrics.  Additionally, 

instantaneous roll and pitch rates collected during the previous analysis were utilized.  All raw 

data was contained in comma separated value (CSV) format. 

Software 

HRV analysis was accomplished using the Kubios HRV version 3.0.2 software package 

(Tarvainen et al., 2014).  This included preprocessing of the data (loading, filtering ECG signals) 

and implementation of the algorithms to compute time and frequency domain HRV indices.  
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OPL developed algorithms and the CATS architecture were used to calculate TPV-based 

workload.  Plots depicting flight technical data and workload were generated in LabView 2015 

Student Edition (Elliott, Vijayakumar, Zink, & Hansen, 2007).  Statistical tests, boxplots, and 

empirical CDFs were generated Minitab 2014 and 2017. 

Calculations 

For the first level of analysis, mean values for the duration of the N1 talk-on portions 

were calculated using the formulas described in Chapter 2 in the Kubios software.  Spectral 

powers were estimated using Welch’s periodogram method (Welch, 1967) for FFT, in which the 

RR series is divided into overlapping segments (windows).  The window width and overlap for 

this portion of the analysis were 300 seconds and 50% respectively.  TPV Relative Workload 

was calculated using CATS.  This analysis used a time delay of 12 seconds and embedding 

dimension of 4 to generate the ETMs.  Additionally, a buffer size of 1024 samples and overlap of 

50% were used to generate an average workload value at exactly 1 second intervals.  Results 

from analysis of each individual subject were compiled to preform statistical analysis.   

For the second and third level of analysis, a window average method was used to 

calculate time-varying values for time and frequency domain metrics.  This window was 

calculated using a 30 second window with 29 second overlap to establish a time series of values 

at 1 second intervals.  The rationale for this was for ease of comparison with the TPV dataset, as 

described above, which generates a unique value at 1 second intervals.  For the second level of 

analysis, these values were used to generate empirical cumulative distribution functions (CDF) 

for the talk-on periods of each symbology for the selected subjects.   

For the third level of analysis, the time series data for each metric were imported into the 

Labview software to generate time series charts of the talk-ons for comparison with flight 

technical data for the selected events.  Flight technical data that was included (roll rate and pitch 

rate) was collected continuously at a sampling rate of 50 Hz.  In the raw data extracted from 

CATS, these values were calculated continuously for each sample.  As a result, the raw data 
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series contained considerable noisy fluctuations.  For this reason, a moving window average of 1 

second (50 samples) was used to smooth the time series for plotting. 

Criteria for Comparison 

This analysis focused primarily on two of the criterion for assessing MWL measures 

described previously in Chapter 2: sensitivity and diagnosticity.  Sensitivity was assessed 

primarily in the first two levels of analysis.  This was simply evaluated as the degree to which 

the HRV metrics in question could differentiate MWL between the three symbology conditions.  

This was analyzed quantitatively in the first level of analysis by means of statistical tests.  The 

second and third level of analysis employed more qualitative approach through visualization of 

the data.  Diagnosticity was evaluated as the ability of the HRV metrics to identify MWL driving 

elements of the talk-on task.  This criterion was evaluated solely in the third level of the analysis.  

This approach was somewhat unconventional relative to other studies which have compared 

MWL measurement techniques in that mental resource types and task elements were not 

controlled for.  Rather, this analysis treated the temporal sensitivity of the time series plots for 

the included metrics as a diagnostic quality.  Through review of video and audio, specific 

elements/events of the talk-on (e.g. visual search, unusual events) identified as MWL-driving 

were correlated with elements of the HRV metrics’ time series.  The responsiveness of each 

metric to elements was interpreted as their level of diagnosticity. 
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CHAPTER 5 – RESULTS AND DISCUSSION 

This chapter is divided into three subsections to align with the three-level analysis 

approach described in the previous chapter.  First, sensitivity analysis on all ECG metrics of 

interest is reported.  In this sense, sensitivity refers to the degree with which each metric could 

detect MWL level differences between the three symbologies based on comparison of mean 

values for the entire talk-on.  The second and third section show results of time varied 

calculations of each metric.  In the second section, three subjects of interest who, based on 

analysis of video and subjective feedback, exhibited substantial differences in MWL between 

symbologies.  These data are presented with empirical CDFs to compare the distribution of 

values.  The focus of this section is also sensitivity but narrowed to a within-subject scope.  The 

third section presents a qualitative case analysis of select subjects in which significant MWL 

driving events during the talk-on phase were identified.  The third section focuses on 

diagnosticity with respect to specific MWL-driving events in the talk-on phase. 

Sensitivity – Talk-On for All Subjects 

Mean values for HRV metrics were calculated for the talk-on phase to examine which 

metrics could effectively detect MWL differences between symbologies.  Descriptive statistics 

(mean and standard deviation) are shown in Table 3.  These data show several key results.  First, 

for most of the time domain metrics, the differences in means between the DFR and the CDF and 

NDFR exhibit the same general trend observed in the initial MWL analysis discussed in Chapter 

3 (TPV Workload also in Table 3), which indicated the highest MWL occurred in the DFR 

condition.  In this case, these metrics show lowest HRV in the DFR condition.  The only 

exception to this trend was mean HR, which showed almost no difference between symbology 

conditions. 

The results from the frequency domain, however, appear to diverge from the time domain 

metrics and TPV workload.  The condition eliciting the highest MWL would be expected to 
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show the highest value in the LF power spectrum, lowest value in the HF power spectrum, and 

highest LF/HF ratio.  The opposite trend was observed.  However, the results of the statistical 

tests discussed below (Table 4) show the weakest effect of symbology on these metrics, which 

may partially explain this divergence.  This may also have been impacted by the fact that 

respiration effects could not be accounted for since this data was not available. 

Table 3. Descriptive Statistics for Talk-On HRV Metrics (N=10). 

 
 CDF DFR NDFR 

 
Metric Mean SD Mean SD Mean SD 

Time 

Domain 

Mean HR 

(bpm) 
81.32 19.33 80.97 18.71 80.55 23.13 

SDNN (ms) 72.58 28.02 58.37 27.26 73.40 40.30 

RMSSD (ms) 75.00 39.50 60.60 38.10 76.10 49.40 

pNN50 (%) 22.86 13.61 18.35 12.35 23.41 14.58 

HRVTI 11.01 3.500 9.940 3.42 11.57 2.689 

TINN 417.3 204.3 309.2 175.5 389.1 237.4 

Frequency 

Domain 

LF Power (nu) 55.05 23.44 51.15 16.02 55.63 21.75 

HF Power (nu) 44.73 23.23 48.68 16.02 44.02 21.42 

LF/HF Ratio 1.947 1.716 1.301 0.920 2.174 2.407 

Nonlinear 

Domain 
TPV Workload 3.081 0.687 3.702 0.482 3.355 1.075 

 

The statistical summary for the global sensitivity analysis is shown in Table 4.  

Kolmogorov-Smirnov tests were applied to all the data to test the normality assumption.  If the 

normality assumption could be made, General Linear Model Analysis of Variance (GLM 

ANOVA) was performed.  In the case of violations of the normality assumption and no suitable 

transformation could be found, Kruskal-Wallis nonparametric rank tests were applied.  As Table 

4 shows, the sample distributions for half of the metrics analyzed did not follow a normal 

distribution. 
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Table 4. Statistical Tests for Talk-On HRV Metrics (N=10). 

 Metric Normality Test Significance Test 
Test 

Statistic 
p value 

Time 

Domain 

Mean HR 

(bpm) 
KS=0.223; p<0.010 Kruskal-Wallis 

H=0.19 0.910 

SDNN (ms) KS=0.152; p=0.076 Kruskal-Wallis H=2.11 0.348 

RMSSD (ms) KS=0.152; p=0.076 Kruskal-Wallis H=1.23 0.542 

pNN50 (%) KS=0.162, p=0.046 Kruskal-Wallis H=1.14 0.566 

HRVTI KS=0.124, p>0.150 ANOVA F2,18=1.27 0.304 

TINN KS=0.130, p>0.150 ANOVA F2,18=3.32 0.059 

Frequency 

Domain 

LF Power (nu) KS=0.129, p>0.150 ANOVA F2,18=0.26 0.775 

HF Power (nu) KS=0.132, p>0.150 ANOVA F2,18=0.28 0.759 

LF/HF Ratio KS=0.187; p<0.010 Kruskal-Wallis H=0.34 0.842 

Nonlinear 

Domain 
TPV Workload KS=0.133, p>0.150 ANOVA 

F2,18=2.82 0.086 

 

In short, test symbology did not produce statistically significant effect for any of the 

metrics tested at an alpha level of 0.05.  This could possibly be explained by the small sample 

size (N=10) and the wide sample variances within each metric.  Additionally, there was no 

difference observed in subjective (Bedford) ratings from the previous analysis.  Other than 

subjective reports, there was no other way to evaluate “ground truth” MWL levels between 

symbologies.  This indicates the MWL difference between symbology conditions was subtle 

(perhaps barely existent).  Interestingly, the one metric that came the closest to significance was 

the TINN (p=0.059), followed closely by TPV workload (p=0.086).  The fact that TINN showed 

a stronger effect than other metrics was surprising given that the literature indicates it is the least 

well-suited for the short duration recordings evaluated in this study.  The nearly significant effect 

of TPV workload is consistent with the hypothesis.  Boxplots of two time domain (SDNN) and 

two frequency domain (LF Power and HF power) metrics are shown in Figure 22 and Figure 23 

respectively for visualization.  Figure 24 shows mean TPV workload for comparison. 
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Figure 22. Mean SDNN and RMSSD by Symbology. 

 

Figure 23. Mean LF Power and HF Power by Symbology. 
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Figure 24. Mean TPV Relative Workload by Symbology. 

Time Varying Sensitivity - Within Subject Comparisons 

Three subjects were compared with exhibiting noticeable MWL differences between 

symbologies after review of video, audio, and subjective feedback.  TPV workload and LF 

power, calculated in time series, were used to generate the empirical CDFs shown in Figure 25-

Figure 30.  These CDFs elucidate the distribution of these variables over time as they relate to 

the symbology conditions for the duration of the talk-on.  A general trend that can be observed, 

which again validates the findings from the original MWL analysis, is that the CDF consistently 

elicited overall lower MWL than the NDFR and DFR. 
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Figure 25. CDF of Subject 1 TPV Relative Workload for N1 Talk-On. 

 

Figure 26. CDF of Subject 1 LF Power for N1 Talk-On. 
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Figure 27. CDF of Subject 5 TPV Relative Workload for N1 Talk-On. 

 

Figure 28. CDF of Subject 5 LF Power for N1 Talk-On. 
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Figure 29. CDF of Subject 11 TPV Relative Workload for N1 Talk-On. 

 

Figure 30. CDF of Subject 11 LF Power for N1 Talk-On. 
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Diagnosticity - Event Identification 

Figure 31-Figure 34 show four different special case talk-on phases that were selected 

after careful analysis of video, audio, and workload data for all subjects during the N1 sortie.  

These represent the most prominent findings from this qualitative analysis relating to the 

performance, specifically with respect diagnosticity, of the HRV metrics in question.  Each chart 

shows the change in the respective metrics plotted in time series for the entire duration of the 

talk-on.  The top row shows roll and pitch rate to visualize the relationship of HRV to aircraft 

control.  These rates are shown as absolute values, meaning they indicate only the magnitude of 

the rate but not the direction.  The second row depicts HR in beats per minute (bpm).  The third 

row shows the one selected time domain metric, SDNN, in milliseconds (ms).  It must be noted 

that despite performing well in the first level of analysis, the TINN metric was not suitable for 

calculating short-duration, windowed values in time series, and was therefore excluded from the 

second and third levels of analysis.  In the fourth row, LF power in normalized units (nu) is 

shown to represent the frequency domain.  The last row shows the TPV-based workload.  In each 

graph, shaded areas marked with letters depict periods of interest, which are discussed in the 

narrative below.  In most of the highlighted events, it was expected that each metric would 

indicate an increase in MWL.  The talk-on from Subject 3 (Figure 33) was the one exception to 

this, in which the selected segments demonstrate diagnosticity at low MWL levels. 

Figure 31 shows the talk-on for Subject 1 in the CDF condition.  There were five 

segments of interest noted in the video review, which were as follows: 

 

A) The pilot is looking intensely at Placemat Alpha 01 while simultaneously talking 

to the SP and maneuvering the aircraft to establish a clear visual angle to the 

target area.  The pilot’s visual scan is alternating between the placemat and the 

outside visual scene to orient by correlate terrain features. In this segment and 
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(B), there is heavy distracting communication from other non-tactical air traffic 

over the radio.   

 

B) After the pilot has visual oriented to the target area, he is communicating over the 

radio and searching to establish visual contact with the reference point, FOB 

Ranger.  This visual search continues for approximately 1 minute while 

maintaining line-of-sight purely in the OBS regime.  Of note, the pilot must make 

several corrective stick inputs to keep the aircraft in the appropriate position to 

facilitate the visual search.   

 

C) After acquiring visual contact with FOB Ranger, the pilot is distracted by a failure 

of the upfront lower multi-function display (MFD).  He attempts to troubleshoot 

this issue while in coordination with the SP and EPC.  While troubleshooting, the 

pilot abandons the visual search and loses contact with FOB Ranger.  Small stick 

corrections are observed as the pilot works to maintain level flight.    

 

D) During this period, the pilot again attempts to establish visual contact with FOB 

Ranger, while again aggressively maneuvering the aircraft for ideal visual angle 

on the target area.   

 

E) The pilot has made visual contact with the target and is confirming the shape and 

orientation of the building back to the JTAC.   

 

Overall, this was one of the only selected portions to demonstrate appreciable changes in 

mean HR, as it shows a slight elevation in segments A, B, and D.  Lower relative variability is 

observed in the initial portion in SDNN, which correspond to elevations in TPV workload.  This 

segment shows generally high LF power, but no consistent diagnostic trend.  Elevated TPV 
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workload is observed in all 5 highlight segments.  Also in each highlighted segment, effortful 

and somewhat erratic control of the aircraft is observed and also reflected in the roll and pitch 

rate plots.  More erratic aircraft control was suspected to be a trend in the CDF condition from 

the initial data analysis and is further validated here. 

 

Figure 31. Case 1: Subject 1, CDF Talk-On. 
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Figure 32 shows the NDFR talk-on for Subject 1.  The significant events in the shaded 

areas are as follows: 

 

A) The pilot is communicating with the JTAC and describing the shape and 

orientation of a group of buildings which he believes contains the target.  The 

pilot’s visual angle is in the OBS regime.  There is apparent uncertainty in the 

verbal exchange with the JTAC.   

  

B) After a moment of confusion, the pilot and JTAC realize they are describing 

different building group.  After reexamining the placemat, the pilot realizes he is 

searching on the wrong side of the reference road and makes an aggressive 

correction to reposition the aircraft. 

 

C) During this approximately 1:30 period, the pilot is alternating his scan between 

the placemat and the outside visual scene to find the building group of interest, 

with dialogue indicating apparent confusion and high effort level. 

 

Trends observed in this talk-on bear some similarity to the previous.  The visual search 

task, with respect to both the target area and the placemat, elicited spikes in MWL.  These again 

are most apparent in TPV workload.  SDNN shows modest relative reductions in segments A and 

C, while LF power was again generally elevated but did not display a consistent trend.  This talk-

on represents two other important trends uncovered in analysis.  First, a state of confusion, as 

explained in all three segments, appeared to be a significant workload-driving element.  

Secondly, it is apparent that the visual search task was associated with more stable aircraft 

control in this condition (NDFR) than the CDF shown previously.  A similar effect was observed 

in the DFR condition. 
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Figure 32. Case 2: Subject 1, NDFR Talk-On. 
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Figure 33 shows the CDF talk-on for Subject 3.  Just two notable items segments in this 

talk-on phase are shown, which are as follows: 

 

A) The pilot is executing a visual search for the target area.  The pitch and roll rate 

traces indicate erratic aircraft control with very little effort exerted. 

 

B) The pilot verifies a positive ID of the target and communicates this confirmation 

to the JTAC.   

 

Subject 3 was a unique case in that this subject was noted as putting forth exceptionally 

low effort during the experiment.  This is reflected in the relatively flat plots for each variable.  A 

small increase in TPV workload is shown in segment B, but not reflected in the other variables.  

Segment A shows the visual search task.  Contrary to the previous two examples, low workload 

is reflected in the TPV, yet somewhat erratic aircraft control is reflected in the roll rate plot.  This 

example demonstrates how the combination of physiologic workload and task performance, in 

conjunction, can be diagnostic.  In this example, the combination of low MWL and poor task 

performance validate the observation for the previous two examples that the visual search was a 

MWL-driving element of the talk-on.   
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Figure 33. Case 3: Subject 3, CDF Talk-On. 
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The last selected case was the CDF talk-on for Subject 5 shown in Figure 34.  This case 

differs from the previous three in that recording includes an unsuccessful attack attempt.  The 

previous recordings terminated at the end of the talk-on (prior to attack execution).  This was 

included to highlight several interesting findings.  The significant events in the shaded areas are 

as follows: 

 

A) The pilot is searching intently for FOB Ranger while making heading adjustments 

to gain visual line-of-sight to the target area.  The pilots visual angle to target is 

large, requiring an effortful gaze far OBS.  Meanwhile, he is adjusting aircraft 

heading with small stick inputs to reverse course to a south facing heading.   

 

B) This segment shows an event unique to this case.  The pilot is rolling onto a short 

final to execute a weapon delivery on the target.  The final roll-in occurs at 2:30.   

 

C) For an undetermined reason, the pilot in unable to release the weapon as planned.  

This may have been due to inattention with respect to the attack parameters.   

 

D) In the segment (around 4:40), the aircraft nearly impacts a ridgeline while 

approaching the target area.  Just prior to the end of this segment, the pilot 

reacquires visual contact with the target and communicates this to the JTAC.  

 

Contrary to the other examples, the visual search in segment A only elicited a small 

elevation in MWL.  SDNN was relatively constant and low throughout.  A spike in TPV 

workload is apparent in segment B as the pilot attempts to establish the aircraft within the proper 

attack parameters.  This elevation is also apparent in increased LF power.  Segment C shows 

unusual behavior in the SDNN, LF power and TPV plots.  High SDNN and low LF power values 

indicate very low MWL, which is contrary to corresponding TPV value.  The difference could be 
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explained temporal lag in the SDNN and LF power plots.  The pilot’s failure to release the 

ordinance on time may have been a result of inattention, reflected in lower MWL just prior to 

this segment.  Finally, as expected, the near collision with the ridgeline is segment D corresponds 

with heightened TPV workload, lower SDNN, and increased LF power. 

 

Figure 34. Case 4: Subject 5, CDF Talk-On. 
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CHAPTER 6 – CONCLUSIONS  

Limitations 

There are several limitations of this research that must be disclosed.  Likely the most 

notable is the unconventional design for the analysis.  The HMD study was not deliberately 

designed to compare MWL assessment methods.  Had it been, different controls could have been 

implemented to better address the evaluation criteria, particularly regarding diagnosticity.  

However, the approach was deemed sufficient due to its applicability to applied research settings 

in which experimental control is often difficult to fully achieve.  It should also be noted that all 

HRV metrics were analyzed from the same dataset and are likely related.  This has been noted by 

others conducting studies comparing various HRV metrics (Heine et al., 2017; Verwey & 

Veltman, 1996). 

This analysis did not account for respiration effects in the calculation of HRV metrics as 

this data was not available.  This factor likely impacted the calculation of frequency domain 

measures most of all and may explain the lack of significant effect for these metrics in the first 

level of analysis.  The precise effect of respiration on the TPV workload is unknown and 

warrants further investigation.  Also, in the third level of analysis, some of the visual searches 

displaying heightened MWL levels were accompanied by talking (i.e. comm with the JTAC). 

The study examined short duration and variable recording lengths for comparison.  As the 

literature indicates, comparisons on unequal duration recordings is unconventional, and even 

discouraged in clinical HRV analysis (Task Force, 1996).  However, the design of the 

experiment did not allow for control of the length of ECG recordings as the talk-on phases 

played out as required to meet the objectives of the scenario. 

ECG in general is subject to motion artifact from non-cardiac muscle activity.  This has 

not been fully explored and its impacts not fully characterized with respect to the TPV method.  

Further research is needed to account for motion artifact when using ECG to assess MWL in 
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tasks with a significant physical component.  However, this is currently an ongoing effort at the 

OPL. 

Effects of increased G forces were also not accounted for.  To the best of the author’s 

knowledge, this effect has not been explored with specific focus on changes in nonlinear 

properties and complexity of the ECG signal.  It likely had little impact in this analysis as G 

forces were minimal during the CAS scenario.  However, this warrants research to strengthen the 

validity of the TPV and potentially other nonlinear HRV metrics in live-flight tactical settings 

with more dynamic maneuvering (e.g. Air-to-Air scenarios).   

Summary of Findings 

This research compared the TPV workload method to nine different classical time and 

frequency domain HRV analytical methods.  The goal was to evaluate the relative utility of these 

methods in a live-flight, tactically relevant task.  Sensitivity and diagnosticity were the primary 

criteria for the evaluation.  Additionally, this research sought to provide additional insights into 

the differences in MWL characteristics of the candidate symbologies driving SDO-risk in the 

HMD study.  

Review of the literature indicated a need to further explore the nonlinear domain in MWL 

applications of HRV analysis.  Although classical time and frequency domain methods are well 

validated, they have limitations that may be overcome by incorporating the nonlinear domain.  

While this research only explored one nonlinear method in detail, the findings warrant further 

investigation of the nonlinear elements of the ECG signal.  Further, the literature indicates ECG 

continues to be one of the more suitable physiologic signals to assess operator MWL in live-

flight settings. 

The three-level analysis, overall, indicated comparable if not superior performance of the 

TPV method relative to most other methods analyzed with respect to sensitivity and 

diagnosticity.  With the exception on the TINN method, the TPV method showed higher ability 

to detect workload differences between the symbologies than the other methods.  The general 
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trend of the DFR condition showing the highest workload validated the findings of the initial 

analysis in the HMD study.  The empirical CDFs in the within-subjects comparisons 

demonstrated the TPV method could effectively visualize the time-varying distributions of 

workload for qualitative comparisons between task conditions.  However, in this respect 

performance of the TPV method and the spectrogram FFT method (LF power) produced 

comparable results.  Nonetheless, this level of analysis also validated the original findings.  This 

type of analysis revealed important information not apparent when comparing mean values for 

the duration of the task. 

The third level of analysis generated several interesting findings.  First, it validated the 

expectation that the TPV method would exhibit a high level of temporal sensitivity and ability to 

detect momentary fluctuations in workload.  The time domain metrics, especially mean HR, did 

not show an appreciable level of diagnosticity with respect to the highlighted workload driving 

events.  LF power showed modest temporal sensitivity at certain times but not at others. 

Secondly, it revealed the TPV method could be diagnostic to workload-driving elements 

in the talk-on task.  This enriched the MWL analysis of the HMD study.  It became apparent that 

the visual search task and unusual events (e.g. display failures) induced higher MWL.  It further 

revealed insights into the relationship between task performance, which in this case referred to 

aircraft control, and MWL.  This helped support conclusions in the initial analysis regarding 

flight technical-related precursors to SDO. 

Applications  

The TPV workload method exhibits strong temporal sensitivity, such that it shows 

potential for detecting MWL fluctuations in near real time.  In the context of this study, it proved 

useful for assessing MWL in SDO-risk assessment.  SDO is a rare but deadly event and no bona 

fide incidents were observed in this study.  However, TPV seemed to correlate with flight 

technical data indicating impending SDO events. 
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A second potential application of this method is real-time operator state assessment and 

adaptive automation such as described in Scerbo et al. (2001) and Kraft et al. (2017).  Model-

based workload assessment is beyond the scope of this thesis.  However, the findings herein may 

prove useful for efforts to incorporate psychophysiological measures into existing models. 

Conclusion 

Overall, this research met the objective of establishing the relative utility of the TPV 

method live-flight tactically relevant settings.  One should be cautious to overextend these 

conclusions given the applied nature of this study.  Nonetheless, these findings contribute to 

knowledge of nonlinear HRV analysis in MWL research.  Further efforts in this area are 

warranted. 
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